
Exploring Solvability of the String Link Concordance

Group Using Milnor’s Invariants

Madison Ford1, Benjamin Pagano2, Sarah Pritchard3, and Erin
Wilkerson4

1Wayne State University, 2Occidental College, 3Georgia Institute of Technology, 4Clark
Atlanta University

Summer 2020

Abstract

Linking number is a tool used to measure how ”linked” two components of
a link or string link are or, rather, how hard it is to separate them. We use Mil-
nor’s invariants, which are higher order versions of linking number, to explore
how close C(2)/P(2) is to being abelian (in other words, the solvability of this
group). This project uses two methods to calculate the Milnor’s invariants of
string link commutators within this group. The first method involves generat-
ing surfaces bounded by each component of the string link, then taking their
intersections in an iterative process. The second method involves deriving Mil-
nor’s invariants using group theoretic techniques using the fundamental group
of the link complement. There are a few cases where the Milnor’s invariants of
a string link are always zero, meaning the components are trivially linked and
concordant to the unlink. For more complex links, there may be non-zero Mil-
nor’s invariants. Our research focuses on the Milnor’s invariants of commutators
in the string link group and when they are zero or non-zero. We proved that
there is a class of string links for which the Milnor’s invariants are always zero.
We also developed several tools for more quickly calculating Milnor’s invariants
in non-trivial examples. In further research, we hope to prove that C(2)/P(2)
is not solvable by showing that there are non-trivial commutators of arbitrary
length in C(2)/P(2).

1 Introduction

As far back as the 17th century, mathematicians have worked to comprehend the
“shape” and features of spaces. They developed ideas which lead to the concept of
topology: the study of the shape of spaces. This paper focuses on low-dimensional
topology (dimension less than or equal to 4). In particular, we discuss knots and links
and the spaces in which they exist.

Definition 1.1. A knot is a smooth embedding σ : S1 → S3.

An n-component link is a set of multiple knots, often linked together but never
intersecting. Formally,

Definition 1.2. An n-component link is a smooth embedding σ :
⊔
n S

1 → S3.

There is no n-component link group. Because the connected sum operation for
knots is not well defined on links, more work is needed to define a group operation. We
overcome this by presenting links as string links. String links are a generalization of
pure braids; they are very similar to braids but are allowed to loop back on themselves
in ways that pure braids cannot.

1

Definition 1.3. [1] Let D be the unit disk, I the unit interval, and {p1, p2, . . . , pk}
be n points in the interior of D. An n-component string link is a smooth, proper
embedding σ :

⊔
n I → D × I such that

σ|Ii(0) = {pi} × {0}
σ|Ii(1) = {pi} × {1}

We can turn a link into a string link by first adding an oriented disk to a link in-
tersecting each component exactly once with all intersections positive and then slicing
the disk to pull the link into a braid-like presentation.

Example 1.1. Turning the Hopf link into a string link.

Similarly, the closure of a string link is a link.

Definition 1.4. Let c be a string link. Then let ĉ be the closure of c, formed by
attaching arcs to the top and bottom of the string link.

String links can be formed by stacking. The following example is an intuitive
description of the composition process:

Example 1.2. Let α1, α2 be string links. Then, denote the composition of α1 and α2

by α1·α2, formed by stacking α1 on top of α2 and connecting the two string links, as
shown below.

Formally,

Definition 1.5. Let σ :
⊔
n I → D × I and γ :

⊔
n I → D × I be string links. We

define σ· γ as the embedding λ :
⊔
n I → D × I where

λ|Ii(x) = σ|Ii(2x) 0 ≤ x ≤ 1

2

λ|Ii(x) = γ|Ii(2x−1)
1

2
≤ x ≤ 1

2

The last stipulation for forming a string link group is that two string links are
considered equal in the group if and only if those string links are concordant; that is,
concordance is an equivalence relation on the group.

Definition 1.6. [1] Two n-component string links σ1, σ2 are concordant if there is a
smooth embedding H :

⊔
n(I × I)→ B3 × I such that:

H|(⊔n I×{0}) = σ1

H|(⊔n I×{1}) = σ2

H|(⊔n ∂I×I) = j0 × idI

where j0 :
⊔
n ∂I → S2.

This provides us with inverses; two elements a, a−1 are inverses if aa−1 is concor-
dant to the identity in the group: the unlink.

With these definitions in place, we can begin discussing the group of interest to us:
C(n)/Ncl(P(n)). C(n) refers to the group of n-component string links under stacking,
where string links are equivalent under concordance. P(n) is the pure braid subgroup
of C(n). Briefly, we will review the definition of pure braids for those unfamiliar.

Pure braids on n strands are a subgroup of the braid group on n strands, and
subsequently, a subgroup of the string link concordance group. Pure braids cannot
loop back on themselves in the way that string links may, though. One can think of a
pure braid as a parametrization of a falling object, where each strand must continually
move down as it moves horizontally. Formally,

Definition 1.7. Let D be the unit disk, I the unit interval, and {p1, p2, . . . , pk} be n
points in the interior of D. An n-component pure braid is a smooth, proper embedding
σ :

⊔
n I → D × I such that

σ|Ii(0) = {pi} × {0}
σ|Ii(1) = {pi} × {1}
σ|Ii(x) = {qi,x} × {x}

where qi,x ∈ D.

A braid can be turned into a link by taking its closure (attaching arcs at the top
and bottom).

Figure 1: Turning a braid into a link by attaching arcs/strings at the top and bottom

The stacking operation for P(n) is defined in the same way as the stacking oper-
ation in C(n). With these groups in mind, we can move to the primary focus of our
study: whether C(n)/Ncl(P(n)) is solvable. To understand solvability, we will need
to discuss two group-theoretic concepts: commutators and the derived series.
C(n) is known to be non-abelian because it contains Ncl(P(n)) as a subgroup.

Kuzbary [1] shows that it is still non-abelian if you quotient out Ncl(P(n)).

3

Definition 1.8. For a, b ∈ G, the commutator of a and b, written [a, b], is the element
aba−1b−1 ∈ G.

As the name implies, commutators give a sense of which elements in a group
commute. If [a, b] = idG, then ab = ba, i.e. a and b commute. In an abelian group, all
commutators are equal to the identity, so they do not provide much information. In
a non-abelian group, however, looking at iterations of commutators can help measure
just how close to being abelian a non-abelian group is.

To this end, we employ the concept of a derived series for a group G, a sequence
of nested commutator subgroups.

Definition 1.9. The commutator subgroup [G,G] is the set of all commutators in G.
Formally, [G,G] = {aba−1b−1|a, b ∈ G}

Definition 1.10. The derived series of G is a sequence of commutator subgroups
defined recursively as:

G(0) = G n = 0

G(n) = [G(n−1), G(n−1)] n ≥ 1

With this, we can define solvability.

Definition 1.11. A group G is solvable if G(n) = 1 for some n ≥ 1. In other words,
G is solvable if some member of its derived series is the trivial subgroup.

Recently, Kuzbary showed that the group we are working with is non-Abelian [1].
That is,

Theorem 1.1. C(n)/Ncl(P(n)) is non-abelian for every n.

In our investigation, we sought to expand this result and prove that C(n)/Ncl(P(n))
is not solvable. In pursuit of this goal, our team utilized two distinct methodologies,
assessing string link commutators using surface systems and using the fundamen-
tal group of the string link complement. The focus of the project narrowed as we
worked only in C(n)/Ncl(P(n)) for n = 2. Conveniently, this group is C(2)/P(2),
since P(∈) = Ncl(P(∈)), which is not true for n > 2. P(n) is not a normal subgroup
of C(n). Considering only this group, closures of two-strand pure braids may have a
nonzero linking number.

Linking number involves assigning a value (either 1 or −1) to each crossing. As-
sume that an oriented link with two components, K and J , has a standard projection.
If a particular crossing is right-handed – J crosses under K from the right to the left
– then the sign of that crossing is 1. But if J crosses under K from the left to the
right, the sign of said crossing is −1, shown in figure 2.

Figure 2: A left hand crossing (left) and right hand crossing (right)

Definition 1.12. The linking number of K and J , denoted `k(K,J), is the sum of
the signs of all the crossings where Kpasses under J.

Note that linking number is symmetric. That is, `k(J,K) = `k(K,J) for two
components J,K.

Milnor’s invariants give us a natural way to detect subtle higher order linking
data. If given an oriented, ordered link L, the Milnor’s invariants of L are integers
corresponding to a multi-index which can be computed in multiple ways.

4

In the following sections, we will explore the two methods used to compute Milnor’s
invariants. With the group presentation method, we use fundamental groups and
Magnus expansions to help compute Milnor’s invariants. With surface systems, we
construct figures from which we can calculate Milnor’s invariants as combinations of
linking numbers.

2 Computing Milnor’s Invariants Using Group Pre-
sentations

One way to calculate the Milnor’s invariants for a string link is to consider the struc-
ture of the fundamental group of the link complement.

Definition 2.1. [2] Given a link L, the fundamental group of its complement π1(S3\v(L), p)
is the set of all homotopy classes [f] of loops f : I → S3\v(L) such that

f(0) = f(1) = p

for some fixed p ∈ S3\v(L). The group operation is concatenation of loops.

Essentially, this is a group of all loops in the space around L which begin and end
at a fixed point p. Elements of this group are considered equivalent under homotopy.
This means that if one loop can be deformed into another without crossing the link,
then those loops are equivalent.

As it happens, there is an easy way to present this fundamental group using the
diagram for the link. To each arc in the diagram we assign a generator of the group.
This generator is a loop going around that arc oriented so that it has positive linking
number with the component it links. Figure 3 shows three such generators near a
crossing. It is always assumed that such loops are based at a point p far above
the link, but often we will only draw a portion directly under the link diagram for
simplicity.

Once generators are determined, we can use crossings to deduce relations for the
group. In figure 3, we see a right hand crossing with generators a, b, and c.

Figure 3: Four fundamental group generators near a crossing

Imagine concatenating these generators to create the loop bca−1c−1, shown in
figure 4. This loop need only be based at P at its start and end, so we can homotope
other meeting points for the generators away from P , as shown. The resulting loop
can be pulled out from under the crossing and is in fact homotopic to the constant
loop at the base point. Thus, this is the identity in the fundamental group and we
can write bca−1c−1 = idG.

5

Figure 4: Four fundamental group generators concatenated

This process can be repeated to find a relation for every crossing. Along with the
list of generators, this forms a presentation for the fundamental group known as the
Wirtinger presentation.

We will try and write the longitude of a component of our link as an element of
the fundamental group of the link complement, and we will use this presentation to
do so. This longitude can then be used to directly compute the Milnor’s invariants of
the link.

2.1 0-framed Longitudes

As will be discussed in section 3, each knot bounds many surfaces. One such surface
can be found algorithmically using the Seifert algorithm. We will use this fact to
define the 0-framed longitude for a knot.

Definition 2.2. The 0-framed longitude of a knot K is the curve formed by the
intersection of a Seifert surface for K with the boundary torus ∂(S3\v(K)).

This longitude can be written as a word in the fundamental group of the link
complement. We would like to write this longitude using only one generator from
each component. If we can do so, it is possible to use a mapping known as the
Magnus expansion to directly compute Milnor’s invariants for the link.

Definition 2.3. The Magnus expansion is a mapping from the free group with n
generators to the ring of power series in n noncommuting variables such that

• xi → 1 +Xi

• x−1i → 1−Xi +X2
i −X3

i + . . .

The Magnus expansion of a word w made from n generators can be written M(w) =
1 +

∑
I εIX

I where the sum is taken over all possible multi-indices I = (i1, . . . , im)
where 1 ≤ ij ≤ n. In this notation XI = Xi1 . . . Xim . This notation will prove useful
for the next definition.

For this group presentation method, the definition of Milnor’s invariants we will
use depends on this Magnus expansion.

Definition 2.4. [3] Let L be an n-component link and G = (π(S3\v(L), p), ∗) be
the fundamental group of its complement. Let lik be the ithk longitude of L and let
Rk(lik) be its image in G/Gk. Using the notation from the previous definition, let
M(Rk(lik)) = 1 +

∑
I εIX

I . The Milnor’s invariants of L are integers µ(i1, . . . , ik)
where µ(i1, . . . , ik) = εI(Rk(lik)).

This definition gives us a useful way of calculating Milnor’s invariants of a link
with reference to the fundamental group of its complement. The major difficulty for
this approach is getting the longitude in a form where it uses only one generator
from each component. As it happens, some generators in the Wirtinger presentation

6

are redundant, so it is possible to reduce the longitude using only information from
crossing relations. However, this is often not enough. The next steps involve modding
out the fundamental group by elements of its lower central series.

Definition 2.5. The lower central series of a group G is the sequence of nested
commutator subgroups G1 D G2 D G3 D . . . such that G1 = G and Gn = [G,Gn−1]
for n ≥ 2.

Rewriting the 0-framed longitude of a link component mod Gq and taking its
Magnus expansion will yield some power series. If that power series has a non-constant
term, then the coefficient of the first non-constant term is the first non-vanishing
Milnor’s invariant for the link. Milnor’s invariants are defined as follows [1].

Definition 2.6. Let L ⊂ S3 be an oriented, ordered link and let G = π1(S3\v(L), ∗)
be the fundamental group of its complement. The Milnor’s invariants of L are integers
µ̄(i1...ik) each corresponding to a multi-index (i1, ..., ik) where i + j ∈ {1, ..., n}. Let
lik be the ik

th longitude of L and let Rk(lik) be its image in G/Gk. Expressed in the
generators found in Theorem 2.36 of Kuzbary [1], this group element corresponds to
a word w in meridians x1, ..., xn. The Magnus expansion of this word is M(w) =
1 + ΣI∈IX

I where the sum is taken over all possible multi-indices I = (j1, ..., jm) and
XI is shorthand for xj1Xjm . Then,

µ̄((i1...ik) =∈I (Rk(lik))

this integer is well-defined if all the Milnor’s invariants of order less than k are 0.
Otherwise, this integer is defined to be the residue class modulo

∆ = gcd{µ̄(Ĩ)}

where Ĩ is obtained from i1, ..., ik by removing one index and cyclically permuting the
other indices.

Many of our results deal with this rewriting process and attempt to make it easier,
giving us tools to prove that there exist string link commutators of arbitrary size
with non-zero Milnor’s invariants. Since Milnor’s invariants are defined modulo other
Milnor’s invariants of smaller weight, we are only concerned with the first non-zero
Milnor’s invariants.

3 Computing Milnor’s Invariants Using Surface Sys-
tems

3.1 Seifert Surfaces

Seifert’s theorem states that every knot is the boundary of an orientable surface [4].

Definition 3.1. Let k be a knot and S be an oriented surface such that the boundary
of S is k. Then, S is a Seifert surface for k.

Seifert’s algorithm for generating a Seifert surface for a given knot k is as follows.

1. Orient the knot k.

2. Resolve each crossing (that is, smooth the knot so it no longer has any crossing)
in a manner that respects the orientation.

3. At the location of each crossing that was smoothed, add a twisted band.

7

Example 3.1. Finding a Seifert surface for the trefoil using Seifert’s algorithm.

To compute the Milnor’s invariants of a string link commutator using surface sys-
tems, we will perform a variation on Seifert’s algorithm. Consider the string link
below.

Example 3.2. Finding a Seifert surface for the component c(x).

To find a Seifert surface for the component of the link on the left, we can take
the closure of the string link, then select one knotted section of the component and
perform Seifert’s algorithm as if the knot were closed. We will do this for each knotted
section until the entire component bounds a surface. Then, to ensure that the surface
bounded by this component is disjoint from the second component of the link, we can
add hollow tubes for the other component to pass through in a manner that respects
the orientation of the surface.

8

Seifert surfaces are not unique, so although adding genus like this changes the surface,
its boundary is still the component c(x) of the string link.

3.2 Surface Systems Method

For a curve c(x) on a surface or surfaces, the positive push off of c(x) is denoted
c+(x). We arrive at the positive push by pushing a curve off the surface(s) it lays on
in a direction that is positive relative to all those surfaces [3].

Example 3.3. The following image indicates the direction in which one should ”push”
the intersection curve c(xy) off the surfaces to arrive at the positive push off of the
surfaces: c+(xy).

We use n-bracketing to index all the curves and surfaces in a surface system, which
Cochran defines as follows [5].

Definition 3.2. The set of n-bracketings (in m variables) Bn is given inductively by:

• B1 = {x,y,z...} and

9

• Bn = {(σ,ω) | σ ∈ Bk, ω ∈ Bn−k, 1 ≤ k ≤ n− 1}

Using the two previous terms, Cochran [5] defines a surface system as follows.

Definition 3.3. A surface system of length n for L is a pair (C,V) of sets satisfying:

• There exists a coherent subset S of ∪Bi such that if ω(σ) < n then σ ∈ S.

• V is a set of compact, oriented, transversly indersecting, 2-dimensional (possi-
bly empty) submanifolds V (σ) of E(L), bijectively indexed by σ ∈ S such that
V (α, β) is V (β, α) with the opposite orientation.

• C is a set of closed, oriented (possibly empty) 1-dimensional submanifolds of
E(L) containing the longitudes c(x),c(y),c(z),... and all of whose other ele-
ments are bijectively indexed by (β, α) where β, α are in S. Specifically, C is
the set consisting of the longitudes of L together with all c(β, α) where c(β, α) is
V (β)∩V (α). By convention, V (α)∩V (α) is empty. These intersections are ori-
ented according to the convention that the ordered triple (orientation of c(β, α),
positive normal to V (β), positive normal to V (α)) be the chosen orientation of
S3. These positive normals shall be chosen so that the ordered pairs (orienta-
tion of the surface, positive normal) give the ambient orientation. We shall let
c+(β, α) denote either a (+,+), (+,-),(-,+), or a (-,-) push-off of c(β, α) with
respect to V (β) and V (α) such that the interior of the annulus spanning c and
c+ misses all elements of C. Define c+(x) to be c(x) and similarly for other
longitudes. Since c(β, α) = −c(α, β), it is required that these push-offs satisfy
c+(β, α) = −c+(α, β).

• δV (σ) = c+(σ).

• Suppose w(α)+w(β) ≤ n; then, c(σ)∩V (β) is empty unless c(σ) ⊂ V (β). Thus,
c(σ) ∩ c(β) is empty unless the images of the curves coincide. Furthermore, it
is convenient to impose the condition that if w(β) < n then each component of
δV (β) is the entire boundary of a component of V (β).

Cochran also shows that we can compute the lowest weight non-vanishing (non-
zero) Milnor’s invariants of any link using surface systems [5].

Proposition 3.1. If a complete system of weight n exists for L then the value
of µ̄(i1i2...in) where i1 6= in is (−1)nΣ`k(c(α), c+(β), a summation of minimal n-
linkings. Suppose γi = (`k(c(σ), c+(γ))i, i = 1, ..., r are minimal coset representatives
of the (non-trivial) equivalence classes of n-linkings. Then, µ̄(i1i2...in) is a linear
combination ΣAiγi of these n-linkings. These coefficients may be computed (indepen-
dent of L) by formally calculating the matrix Massey product.

These coefficients can be calculated using formal Massey products as detailed in
Cochran. However, the examples we have studied are simple enough that finding a
single non-zero linking is sufficient.
This method is most effective for finding the first non-vanishing Milnor’s invariant;
if a Milnor’s invariant is zero, we can perform more iterations of the process, but
otherwise must stop upon reaching the first non-zero Milnor’s invariant.

Definition 3.4. A linking `k(c(a), c(b)) is minimal if (a,b) is minimal.

Cochran provides a table of minimal linkings (that is, how many Milnor’s invari-
ants of each weight there are and what combination of linking numbers they are equal
to). This is helpful in identifying which linear combination of linking numbers one
should take to calculate a given Milnor’s invariant.

10

Definition 3.5. A linking of weight m or an m-linking for (C,V) is `k(c(α), c+(β))
where w(α) + w(β) = n. This will often be abbreviated by `k(c(α), c(β)).

The weight of a Milnor’s invariant can be thought of as the number of digits in the
Milnor’s invariant, where a 1 refers to the first component and a 2 refers to the second
component. For example, µ̄ĉ(12) has a weight of two and µ̄ĉ(1122) has a weight of 4.
Alternatively, we can think of weight as a measure of complexity; with each iteration
of this process, the Milnor’s invariants we calculate increase in weight. Formally,

Note: The length of a surface system (described in Cochran’s initial definition of
a surface system) is distinct from the weight of a surface system.
As mentioned above, Cochran shows that there exist only a certain number of Milnor’s
invariants of each weight, and some of these may be equal [5]. It is necessary to
calculate all unique Milnor’s invariants of a given weight before moving on to the
next iteration of the process.

3.3 Procedure

Given these definitions, we can outline what the process of calculating the Milnor’s
invariants of a link using surface systems may look like. For a commutator C in
C(2)/P (2), the first few iterations of the process would be as follows:

1. Let C be a commutator. Take the closure of C: the link ĉ and denote its
components c(x) and c(y). Then,

µ̄ĉ(12) = `k(c(x), c(y))

2. If this linking number is 0, then generate surfaces V (x), V (y) bounded by
c(x), c(y) respectively. The surface V (x) must be disjoint from the component
c(y) and, similarly, the surface V (y) must disjoint from the component c(x);
this can be achieved by adding hollow tubes as outlined previously.

3. Find the curve of intersection of V (x) and V (y). Denote this curve c(xy). Then,

µ̄ĉ(112) = `k(c(x), c+(xy))

µ̄ĉ(212) = `k(c(y), c+(xy))

and

µ̄ĉ(1212) = `k(c(xy), c+(xy))

4. If all of these linking numbers are 0, then draw the surface V (xy) bounded by
c(xy) so that it is disjoint from c(x) and c(y). More hollow tubes may be needed.

5. Identify the following curves of intersection:

(a) c(xyx): the curve of intersection of V (xy) and V (x)

(b) c(xyy): the curve of intersection of V (xy) and V (y)

Then, similarly, linking numbers of various combinations of these curves will be
Milnor’s invariants of these links. This process of generating surfaces and inter-
secting them may continue until the first non-zero Milnor’s invariant appears.

11

4 Results

4.1 Group Theoretic Results

In order to state the next few results, we will need to establish some additional
technical terms.

Definition 4.1. Let ai and ai+1 be generators of consecutive arcs in a knot diagram.
Assume these arcs are oriented so that there exists a crossing separating them where
the ai arc goes into the crossing and the ai+1 arc goes away from it. We will denote
this crossing by ai → ai+1.

Definition 4.2. Given consecutive arcs with generators ai and ai+1 respectively, we
will use gi+1 to refer to the generator corresponding to the overstrand in ai → ai+1.
Furthermore, let εi+1 ∈ {−1, 1} refer to the ‘handedness’ of that crossing, where
εi+1 = 1 if ai → ai+1 is right handed and εi+1 = −1 otherwise.

Figure 5 shows an ambiguously handed crossing ai → ai+1 with the appropriate
labelings.

Figure 5: An illustration of ai → ai+1

Our first major result will allow us to quickly write the longitude of a link com-
ponent without needing to identify a surface bound by the component.

Theorem 4.1. Given a knot diagram with n arcs where an → a1 exists and ai →
ai+1 exist for 1 ≤ i ≤ n − 1, then the 0-framed longitude of the knot is given by
l = a−ε21 gε22 a

−ε3
2 gε33 . . . a−εnn−1g

εn
n a
−ε1
n gε11

Proof. Recall that a 0-framed longitude will lie on a surface bounded by the knot. We
will assume our knot was given a Seifert surface via Seifert’s algorithm, and we will
trace along that surface, recording the longitude as we go. This surface is orientable
due to the nature of Seifert’s algorithm, so we will assume without loss of generality
that the positive side of this surface is oriented clockwise. That is, we will assume
the positive side of the surface sits to the right of the knot.

Note that if the surface would normally appear just as a negative side to the left
of our knot, we can create a ‘bump’ in the surface to ensure the longitude always sits
to the right of our knot, as shown in figure 6

Figure 6: Illustration of the ‘bump’.

Therefore, we can begin tracing the knot to the right of an arc and consider what
happens at each crossing. As long as we follow the same arc, our longitude will never

12

pass under the knot. Therefore, we need only consider crossings where the arc we are
tracing passes under some other arc.

First, suppose we reach a right-hand crossing ai → ai+1, as shown in figure 7. Note
that the surface must appear locally in the quadrants as shown in order to maintain
proper orientations when Seifert’s algorithm is applied. It is possible that quadrants
2 and 4 contain a surface sitting below quadrant 1 or 3, but such a region is not local
to this particular crossing, and thus not relevant to the longitude at this point.

Figure 7: A 0-framed longitude passing by a RHC

The longitude (shown in purple) will pass under the arc for gi+1 as the surface
twists, and then under the arc for ai+1 to reach the bump shown on the right. This is
equivalent to the word gi+1a

−1
i+1 in G. However, this crossing also gives us the relation

gi+1a
−1
i+1 = a−1i gi+1, and we will record the latter expression to keep in line with the

statement of the theorem.
Similarly, we may reach a left-hand crossing aj → aj+1 as shown in figure 8.

Figure 8: A 0-framed longitude passing by a LHC

In this case, the longitude passes under the arc for aj and then under the arc for
gj+1. This corresponds to the word ajg

−1
j+1 in G.

Thus, we have found that as we trace the knot, we must record (a−1i gi+1)ε when-
ever we pass under a crossing ai → ai+1, where ε corresponds to the handedness of the
crossing, as described earlier in our definitions. If we begin tracing alongside the arc
for a1, then the full word will come out to be l = a−ε21 gε22 a

−ε3
2 gε33 . . . a−εnn−1g

εn
n a
−ε1
n gε11 ,

as desired.

Note that the above theorem applies only to knots. We need a slight adjustment
if we are to apply it for links.

Corollary 4.1. Let L1 be a component of a link L. Then the 0-framed longitude of
L1 is given by l1 = xε21 x

ε3
2 . . . xεnn−1x

ε1
n , where

xi = a−1i gi+1 if ai → ai+1 includes arcs from exactly one component

xi = gi+1 if ai → ai+1 includes arcs from two components

gn+1 = g1

13

Proof. Again we imagine tracing along the component of our link as in theorem 4.1.
For crossings ai → ai+1 where all arcs come from the same component, nothing
changes. For crossings ai → ai+1 where gi+1 is a generator of a different component
than ai or ai+1, there will not be a twist in the surface bound by L1 as there would
be in other crossings. See figure 9. Therefore, only gi+1 needs to be recorded.

Figure 9: An ambiguously handed crossing between two components. L1 on bottom.

If one wishes, they can use this result to quickly record a 0-framed longitude for a
component in their link by tracing along it and recording generators as described. If
one is working with a string link commutator, however, there is an even easier way to
quickly record the 0-framed longitude for a component. This is due to the following
result.

Theorem 4.2. If L is a string link commutator, then the 0-framed longitude of each
component is equal to its blackboard longitude.

Proof. Let L1 be an arbitrary component of our string link commutator L, and assume
we have a knot diagram where L1 has n arcs. Let {a1, . . . , an} be the generators
corresponding to arcs of L1. Assume an → a1 exists and ai → ai+1 exist for 1 ≤
i ≤ n − 1. From these crossings, we can derive the relations ang

ε1
1 a
−1
1 g−ε11 = id and

aig
εi+1

i+1 a
−1
i+1g

−εi+1

i+1 = id for 1 ≤ i ≤ n− 1.
Rearranging these relations, we have ang

ε1
1 = gε11 a1 and aig

εi+1

i+1 = g
εi+1

i+1 ai+1 for

1 ≤ i ≤ n − 1. We could also have derived the relations a−1n gε11 a1g
−ε1
1 = id and

a−1i g
εi+1

i+1 ai+1g
−εi+1

i+1 = id which give us a−1n gε11 = gε11 a
−1
1 and a−1i g

εi+1

i+1 = g
εi+1

i+1 a
−1
i+1 for

1 ≤ i ≤ n− 1 when rearranged. In summary,

ang
ε1
1 = gε11 a1

a−1n gε11 = gε11 a
−1
1

aig
εi+1

i+1 = g
εi+1

i+1 ai+1

a−1i g
εi+1

i+1 = g
εi+1

i+1 a
−1
i+1

Now, consider the 0-framed longitude of L1, given by corollary 4.1 as

l1 = xε21 x
ε3
2 . . . xεnn−1x

ε1
n

where

xi = a−1i gi+1 if ai → ai+1 includes arcs from exactly one component

xi = gi+1 if ai → ai+1 includes arcs from two components

gn+1 = g1

14

Let xk = gk+1 be the first xi to correspond to a two component crossing. Using
the relations listed above, we can make the following changes:

l1 = xε21 x
ε3
2 . . . x

εk+1

k . . . xεnn−1x
ε1
n

l1 = a−ε21 gε22 a
−ε3
2 gε33 . . . g

εk+1

k+1 . . . x
εn
n−1x

ε1
n

l1 = gε22 a
−ε2
2 a−ε32 gε33 . . . g

εk+1

k+1 . . . x
εn
n−1x

ε1
n

l1 = gε22 a
−ε2
2 gε33 a

−ε3
3 . . . g

εk+1

k+1 . . . x
εn
n−1x

ε1
n

l1 = gε22 g
ε3
3 a
−ε2
3 a−ε33 . . . g

εk+1

k+1 . . . x
εn
n−1x

ε1
n

...

l1 = gε22 g
ε3
3 . . . a

−(ε2+ε3+···+εk)
k g

εk+1

k+1 . . . x
εn
n−1x

ε1
n

l1 = gε22 g
ε3
3 . . . g

εk+1

k+1 a
−(ε2+ε3+···+εk)
k+1 . . . xεnn−1x

ε1
n

Continuing this pattern, we arrive at

l1 = gε22 g
ε3
3 . . . gεnn g

ε1
1 a
−((

∑n
i=1 εi)−εk1

−εk2
−···−εkp)

1

where {xk1 , xk2 , . . . , xkp} are all xi’s corresponding to two component crossings.
From here, note that since our link is a commutator, it has an equal number of

right and left hand crossings. So,
∑n
i=1 εi = 0. Additionally, since it is a commutator,

`k(L1, Li) = 0 for all i 6= 1. Thus, εk1 + εk2 + · · ·+ εkp = 0.

Therefore, the 0-framed longitude of our knot is l1 = gε22 g
ε3
3 . . . gεnn g

ε1
1 a
−(0−0)
1 =

gε22 g
ε3
3 . . . gεnn g

ε1
1 , which is precisely the blackboard longitude.

To see that this is the blackboard longitude, imagine tracing the knot as described
in theorem 4.1, but only record the generators for arcs you pass under. This will give
you the blackboard longitude for the knot, and will result in the word given above.

From this proof, we now have an even quicker way of recording 0-framed longitudes
for components of string link commutators. It is echoed in the following theorem.

Corollary 4.2. Let L be a commutator of string links. Let L1 be an arbitrary
component of L, and assume we have a knot diagram where L1 has n arcs. Let
{a1, . . . , an} be the generators corresponding to arcs of L1. Assume an → a1 exists
and ai → ai+1 exist for 1 ≤ i ≤ n− 1. Then the 0-framed longitude of L1 is given by
l1 = gε22 g

ε3
3 . . . gεnn g

ε1
1

Notably, this result applies to any knot with an equal number of right and left
hand crossings, as well as any link component which has an equal number of right
and left hand self-crossings. Additionally, the result does not require one to start
tracing at a specific point, so one could write l1 = gεii g

εi+1

i+1 . . . g
εn
n g

ε1
1 . . . g

εi−1

i−1 for any
1 ≤ i ≤ n.

4.2 Additional Results

As a result of our research, we were able to identify a class of string link commutators
that are always concordant to the two-component unlink and, subsequently, have no
non-zero Milnor’s invariants.

Lemma 4.1. For every symmetric weight m ≥ 2 commutator c ∈ C(2)(m) that is the
composition of string links a1, a2, ..., am+1 and their inverses, if a1 = a3, a2 = a4,
a5 = a7, and so on for all an, then its closure ĉ is concordant to the two-component
unlink.

15

Proof. Consider as a base case a weight 2 commutator c0 = [[a1, a2], [a3, a4]]. If
a1 = a3 and a2 = a4 then we can substitute to arrive at:

c0 = a1a2a1
−1a2

−1a1a2a1
−1a2

−1a2a1a2
−1a1

−1a2a1a2
−1a1

−1

By definition, a2a2
−1 is concordant to the identity on this group. Similarly, a1a1

−1

is concordant to the unlink.

c0 = a1a2a1
−1a2

−1a1a2a1
−1a2

−1a2a1a2
−1a1

−1a2a1a2
−1a1

−1

∼= a1a2a1
−1a2

−1a1a2a1
−1a1a2

−1a1
−1a2a1a2

−1a1
−1

∼= a1a2a1
−1a2

−1a1a2a2
−1a1

−1a2a1a2
−1a1

−1

∼= a1a2a1
−1a2

−1a1a1
−1a2a1a2

−1a1
−1

∼= a1a2a1
−1a2

−1a2a1a2
−1a1

−1

∼= a1a2a1
−1a1a2

−1a1
−1

∼= a1a2a2
−1a1

−1

∼= a1a1
−1

∼= idC(2)/P(2)

Then, beginning from the a2a2
−1 in the center of c0, we can simplify to show that c0

is concordant to the two-component unlink.

Let cm−2 = [Am−3, Bm−3] be a commutator with weight m > 2 and Am−3, Bm−3
be commutators concordant to the two-component unlink. Then, Am−3 can be written
as [α1, α2] ∼= idC(2)/P(2) for some α1, α2 in C(2)/P(2). We can write this as follows.

Am−3 = α1α2α1
−1α2

−1 ∼= idC(2)/P(2)

Then,
α1
∼= α2

So, we can write
Am−3 ∼= α1α1α1

−1α1
−1

Am−3 ∼= α1α1
−1

Similarly, Bm−3 can be written as [b1, b2] ∼= idC(2)/P(2) for some b1, b2 in C(2)/P(2),
implying

b1 ∼= b2

and
Bm−3 ∼= b1b1b1

−1b1
−1

∼= b1b1
−1

Then, we may substitute to arrive at:

cm−2 ∼= α1α1
−1b1b1

−1α1
−1α1b1

−1b1

cm−2 ∼= idC(2)/P(2)

Thus, if each commutator Am−3, Bm−3 and its inverse is concordant to the two-
component unlink, then cm−2 will also be concordant to the two-component unlink.

Corollary 4.3. For every weight m ≥ 2 commutator c ∈ C(2)(m) that is the compo-
sition of string links a1, a2, ..., am+1 and their inverses, if a1 = a3, a2 = a4, a5 = a7,
and so on for all an, then its closure ĉ has no non-vanishing Milnor’s invariants.

Proof. Let c be a commutator in C(2)(m) that is the composition of string links
a1, a2, ..., am+1 and their inverses. If a1 = a3, a2 = a4, a5 = a7, and so on for
all an, then, by Lemma 4.1, its closure ĉ is concordant to the two-component un-
link, which has no non-vanishing Milnor’s invariants. Cochran shows that Milnor’s
invariants are a concordance invariant [5] . By definition, if c is concordant to the
two-component unlink, then c has no non-vanishing Milnor’s invariants.

16

References

[1] M. Kuzbary, Link Concordance and Groups. PhD thesis, Rice University, May
2019.

[2] A. Hatcher, “Algebraic topology,” 2001.

[3] C. A. Otto, The (n)-Solvable Filtration of the Link Concordance Group and Mil-
nor’s µ-Invariants. PhD thesis, Rice University, April 2011.

[4] C. Livingston, “Knot theory,” 1993.

[5] T. D. Cochran, “Derivatives of links: Milnor’s concordance invariants and massey’s
products,” 1990.

17

