# A new concordance invariant of knots in sums of $S^2 \times S^1$

Miriam Kuzbary

Rice University

December 14, 2018

Miriam Kuzbary (Rice University) Knot Conc. Invt. in  $S^2 \times S^1$ 's

Two knots K and J inside S<sup>3</sup> are concordant if there is a smooth, properly embedded annulus in S<sup>3</sup> × [0, 1] whose boundary is K × {0} ⊔ J × {1}.

- Two knots K and J inside S<sup>3</sup> are concordant if there is a smooth, properly embedded annulus in S<sup>3</sup> × [0, 1] whose boundary is K × {0} ⊔ J × {1}.
- A knot  $K \subset S^3$  is slice if bounds a properly embedded disk in  $B^4$ .

- Two knots K and J inside S<sup>3</sup> are concordant if there is a smooth, properly embedded annulus in S<sup>3</sup> × [0, 1] whose boundary is K × {0} ⊔ J × {1}.
- A knot  $K \subset S^3$  is slice if bounds a properly embedded disk in  $B^4$ .
- Two *n*-component links  $L_1$  and  $L_2$  in  $S^3$  are concordant if their components are concordant by *n* disjoint smooth annuli.

- Two knots K and J inside S<sup>3</sup> are concordant if there is a smooth, properly embedded annulus in S<sup>3</sup> × [0, 1] whose boundary is K × {0} ⊔ J × {1}.
- A knot  $K \subset S^3$  is slice if bounds a properly embedded disk in  $B^4$ .
- Two *n*-component links  $L_1$  and  $L_2$  in  $S^3$  are concordant if their components are concordant by *n* disjoint smooth annuli.
- An *n*-component link L in  $S^3$  is slice if it bounds *n* smooth, disjoint, properly embedded disks in  $B^4$ .

- Two knots K and J inside S<sup>3</sup> are concordant if there is a smooth, properly embedded annulus in S<sup>3</sup> × [0, 1] whose boundary is K × {0} ⊔ J × {1}.
- A knot  $K \subset S^3$  is slice if bounds a properly embedded disk in  $B^4$ .
- Two *n*-component links  $L_1$  and  $L_2$  in  $S^3$  are concordant if their components are concordant by *n* disjoint smooth annuli.
- An *n*-component link L in  $S^3$  is slice if it bounds n smooth, disjoint, properly embedded disks in  $B^4$ .

### Proposition

A knot (or link)  $K \subset S^3$  is slice if and only if it is concordant to the unknot (or unlink).

For oriented links  $L \subset S^3$ , linking number is one of the first tools we use to detect nontrivial links.

For oriented links  $L \subset S^3$ , linking number is one of the first tools we use to detect nontrivial links.

Example

For oriented links  $L \subset S^3$ , linking number is one of the first tools we use to detect nontrivial links.

Example (a) lk(K, J) = 1

For oriented links  $L \subset S^3$ , linking number is one of the first tools we use to detect nontrivial links.



For oriented links  $L \subset S^3$ , linking number is one of the first tools we use to detect nontrivial links.



#### Fact:

If L is an n-component oriented link with  $L_i$  the 0-framed longitude of the  $i^{th}$  component of L and  $G = \pi_1(S^3 \setminus \nu(L), *)$ , then

$$[L_i] = \sum_{i=1}^n \operatorname{lk}(L_i, L_j) \cdot x_i \in \operatorname{H}_1(S^3 \setminus \nu(L)) = G/[G, G]$$

where  $x_i$  represents the  $i^{th}$  meridian.

### Fact:

If L is an n-component oriented link with  $L_i$  the 0-framed longitude of the  $i^{th}$  component of L and  $G = \pi_1(S^3 \setminus \nu(L), *)$ , then

$$[L_i] = \sum_{i=1}^n \operatorname{lk}(L_i, L_j) \cdot x_i \in \operatorname{H}_1(S^3 \setminus \nu(L)) = G/[G, G]$$

where  $x_i$  represents the  $i^{th}$  meridian.

#### Question:

What if you look at the image of this longitude in a different quotient of G?

#### Recall:

The lower central series of a group G is defined recursively by  $G_1 = G$ ,  $G_{n+1} = [G_n, G]$ .

#### Recall:

The lower central series of a group G is defined recursively by  $G_1 = G$ ,  $G_{n+1} = [G_n, G]$ .

### Theorem (Casson '75)

If  $L_1$  and  $L_2$  are concordant links whose groups are G and H, then  $G/G_q$  and  $H/H_q$  are isomorphic for all q.

### Recall:

The lower central series of a group G is defined recursively by  $G_1 = G$ ,  $G_{n+1} = [G_n, G]$ .

### Theorem (Casson '75)

If  $L_1$  and  $L_2$  are concordant links whose groups are G and H, then  $G/G_q$  and  $H/H_q$  are isomorphic for all q.

### Motivating Idea:

Look at the image of a longitude  $L_i$  inside the quotient  $G/G_q!$ 

#### Notice:

If  $L \subset S^3$  is an *n*-component link, then  $H_1(S^3 \setminus \nu(L)) = G/[G,G] = \mathbb{Z}^n$ and the *n*-component unlink has  $\pi_1(S^3 \setminus \nu(U), *) \cong F(n)$ .

### Notice:

If  $L \subset S^3$  is an *n*-component link, then  $H_1(S^3 \setminus \nu(L)) = G/[G, G] = \mathbb{Z}^n$ and the *n*-component unlink has  $\pi_1(S^3 \setminus \nu(U), *) \cong F(n)$ .

### Notice:

If  $L \subset S^3$  is an *n*-component link, then  $H_1(S^3 \setminus \nu(L)) = G/[G, G] = \mathbb{Z}^n$ and the *n*-component unlink has  $\pi_1(S^3 \setminus \nu(U), *) \cong F(n)$ .

To compute higher order linking numbers (called Milnor's invariants) back in '54:

• Find clever presentation of  $G/G_q$ .

#### Notice:

If  $L \subset S^3$  is an *n*-component link, then  $H_1(S^3 \setminus \nu(L)) = G/[G,G] = \mathbb{Z}^n$ and the *n*-component unlink has  $\pi_1(S^3 \setminus \nu(U), *) \cong F(n)$ .

- Find clever presentation of  $G/G_q$ .
- Write  $i^{th}$  longitude modulo  $G_q$  as a word in meridians (one for each component).

#### Notice:

If  $L \subset S^3$  is an *n*-component link, then  $H_1(S^3 \setminus \nu(L)) = G/[G,G] = \mathbb{Z}^n$ and the *n*-component unlink has  $\pi_1(S^3 \setminus \nu(U), *) \cong F(n)$ .

- Find clever presentation of  $G/G_q$ .
- Write  $i^{th}$  longitude modulo  $G_q$  as a word in meridians (one for each component).
- Use the Magnus embedding to map this word to a power series ring in n non-commuting variables and read off coefficients of degree q - 1 terms modulo coefficients of lower order terms.

#### Notice:

If  $L \subset S^3$  is an *n*-component link, then  $H_1(S^3 \setminus \nu(L)) = G/[G,G] = \mathbb{Z}^n$ and the *n*-component unlink has  $\pi_1(S^3 \setminus \nu(U), *) \cong F(n)$ .

- Find clever presentation of  $G/G_q$ .
- Write  $i^{th}$  longitude modulo  $G_q$  as a word in meridians (one for each component).
- Use the Magnus embedding to map this word to a power series ring in n non-commuting variables and read off coefficients of degree q - 1 terms modulo coefficients of lower order terms.

### Rough definition (Milnor '54)

The Milnor invariants of an n-component link  $L\subset S^3$  with link group G are a set of integers

$$\overline{\mu}_L(I) \in \mathbb{Z}$$

with  $I = (i_1...i_k)$  and  $i_j \in \{1, ..., n\}$  detecting when  $G/G_q$  stops being isomorphic to  $F/F_q$  where F is the rank n free group.

### Rough definition (Milnor '54)

The Milnor invariants of an n-component link  $L\subset S^3$  with link group G are a set of integers

$$\overline{\mu}_L(I) \in \mathbb{Z}$$

with  $I = (i_1...i_k)$  and  $i_j \in \{1, ..., n\}$  detecting when  $G/G_q$  stops being isomorphic to  $F/F_q$  where F is the rank n free group.

• 
$$\bar{\mu}_L(ij) = lk(L_j, L_i)$$

### Rough definition (Milnor '54)

The Milnor invariants of an *n*-component link  $L \subset S^3$  with link group G are a set of integers

$$\overline{\mu}_L(I) \in \mathbb{Z}$$

with  $I = (i_1...i_k)$  and  $i_j \in \{1, ..., n\}$  detecting when  $G/G_q$  stops being isomorphic to  $F/F_q$  where F is the rank n free group.

- $\bar{\mu}_L(ij) = lk(L_j, L_i)$
- $\bar{\mu}_L(ijk) = \text{triple linking number}$



 $\bar{\mu}_L(ijk) = 1$ 

• (Milnor '54)  $\bar{\mu}_L(I)$  is a link homotopy invariant for each I with non-repeating indices.

- (Milnor '54)  $\bar{\mu}_L(I)$  is a link homotopy invariant for each I with non-repeating indices.
- (Casson '75)  $\bar{\mu}_L(I)$  is a link concordance invariant for each I.

- (Milnor '54)  $\bar{\mu}_L(I)$  is a link homotopy invariant for each I with non-repeating indices.
- (Casson '75)  $\bar{\mu}_L(I)$  is a link concordance invariant for each I.
- (Turaev '79, Porter '80)  $\bar{\mu}_L(I)$  can be computed by evaluating Massey products in  $H^1(S^3 \setminus \nu(L))$  on individual boundary components.

- (Milnor '54)  $\bar{\mu}_L(I)$  is a link homotopy invariant for each I with non-repeating indices.
- (Casson '75)  $\bar{\mu}_L(I)$  is a link concordance invariant for each I.
- (Turaev '79, Porter '80)  $\bar{\mu}_L(I)$  can be computed by evaluating Massey products in  $H^1(S^3 \setminus \nu(L))$  on individual boundary components.
- (Cochran '90) The first non-zero  $\bar{\mu}_L(I)$  (and thus, the first q for which  $G/G_q$  is not isomorphic to  $F/F_q$ ) can be computed using intersection theory.

### Example

We can detect non-zero Milnor's invariants by intersecting surfaces and computing linking numbers of the intersection curves.

### Example

We can detect non-zero Milnor's invariants by intersecting surfaces and computing linking numbers of the intersection curves.

Build a surface system  $(\mathcal{C}, \mathcal{V})$ 



### Example

We can detect non-zero Milnor's invariants by intersecting surfaces and computing linking numbers of the intersection curves.



### Example

We can detect non-zero Milnor's invariants by intersecting surfaces and computing linking numbers of the intersection curves.



Throw intersection curves in  ${\cal C}$ 



Miriam Kuzbary (Rice University) Knot Conc. Invt. in  $S^2 \times S^1$ 's December 1





Compute pairwise linking numbers of curves in C $lk(C(xy), C^+(xy)) = -1$ 

Miriam Kuzbary (Rice University) Knot Conc. Invt. in  $S^2 \times S^1$ 's





#### Compute pairwise linking numbers of curves in $\mathcal{C}$

 $lk(C(xy), C^+(xy)) = -1$  which indicates (by work of Cochran) that L has a nonzero  $\overline{\mu}_L(I)$  of weight |I| = 4 (and thus  $G/G_5$  is not isomorphic to  $F/F_5$ ).

# Computing $\bar{\mu}_L(I)$





 $V(x) \cap V(y)$  in a simple closed curve c(xy).

#### Compute pairwise linking numbers of curves in $\mathcal{C}$

 $lk(C(xy), C^+(xy)) = -1$  which indicates (by work of Cochran) that L has a nonzero  $\bar{\mu}_L(I)$  of weight |I| = 4 (and thus  $G/G_5$  is not isomorphic to  $F/F_5$ ). If all possible linkings are trivial, run the process again.

# Is there a version of this linking data for knots or links in other 3-manifolds?

#### Question:

For a knot or link  $L \subset M$  where M is an oriented 3-manifold, can we similarly extract concordance data from quotients of  $G = \pi_1(M \setminus \nu(K), *)$  by  $G_q$ ?

# Is there a version of this linking data for knots or links in other 3-manifolds?

#### Question:

For a knot or link  $L \subset M$  where M is an oriented 3-manifold, can we similarly extract concordance data from quotients of  $G = \pi_1(M \setminus \nu(K), *)$  by  $G_q$ ?

#### Previous results:

- (D. Miller '95) Defined Milnor's invariants for knots homotopic to a singular fiber in a Seifert fiber space using covering spaces and combinatorial group theory.
- (Heck '11) Defined a homotopy-theoretic version of Milnor's invariants for knots in prime manifolds.

# Is there a version of this linking data for knots or links in other 3-manifolds?

#### Question:

For a knot or link  $L \subset M$  where M is an oriented 3-manifold, can we similarly extract concordance data from quotients of  $G = \pi_1(M \setminus \nu(K), *)$  by  $G_q$ ?

#### Previous results:

- (D. Miller '95) Defined Milnor's invariants for knots homotopic to a singular fiber in a Seifert fiber space using covering spaces and combinatorial group theory.
- (Heck '11) Defined a homotopy-theoretic version of Milnor's invariants for knots in prime manifolds.

#### Idea:

Exploit surfaces to define analogue of first non-vanishing  $\bar{\mu}_L(I)$ !



A half grope of class 3.

12 / 20



A half grope of class 3.

#### Definition

A class n half-grope is a 2-complex made of n-1 layers of surfaces.

• The first layer is an oriented surface  $\Sigma_2$ .



A half grope of class 3.

#### Definition

A class n half-grope is a 2-complex made of n-1 layers of surfaces.

- The first layer is an oriented surface  $\Sigma_2$ .
- **2** Exactly half of the generators in a symplectic basis for  $H_1(\Sigma_2)$  bound surfaces  $\Sigma_3^i$  where  $1 \le i \le g(\Sigma_2)$ .



A half grope of class 3.

#### Definition

A class n half-grope is a 2-complex made of n-1 layers of surfaces.

- The first layer is an oriented surface  $\Sigma_2$ .
- **2** Exactly half of the generators in a symplectic basis for  $H_1(\Sigma_2)$  bound surfaces  $\Sigma_3^i$  where  $1 \le i \le g(\Sigma_2)$ .

**③** For each *i*, exactly half of the generators in a symplectic basis for  $H_1(\Sigma_3^i) \ldots$ 

The Dwyer number of a knot  $K \subset \overset{\iota}{\#} S^2 \times S^1$ 

#### Definition (Dwyer '75, reformulation by Cochran-Harvey '07)

For a space X,  $\Phi_n(X) \subset H_2(X)$  is the subgroup generated by homology classes which can be represented by maps of surfaces which are the first layer of an n + 1 half-grope. The Dwyer number of a knot  $K \subset \overset{\cdot}{\#} S^2 \times S^1$ 

#### Definition (Dwyer '75, reformulation by Cochran-Harvey '07)

For a space X,  $\Phi_n(X) \subset H_2(X)$  is the subgroup generated by homology classes which can be represented by maps of surfaces which are the first layer of an n + 1 half-grope.

#### Definition (K.)

Let K be a null-homologous knot in  $\#^l S^2 \times S^1.$  The Dwyer number of K is

$$D(K) = \max \left\{ q \mid \frac{\mathrm{H}_2(\#^l S^2 \times S^1 \setminus K)}{\Phi_q(\#^l S^2 \times S^1 \setminus K)} = 0 \right\}$$

Miriam Kuzbary (Rice University) Knot Conc. Invt. in  $S^2 \times S^{1}$ 's December

#### Proposition (K.)

If K is a null-homologous knot in  $\#^l S^2 \times S^1$  with  $G = \pi_1(\#^l S^2 \times S^1 \setminus K, *)$ , then D(K) = q if and only if  $G/G_k$  is isomorphic to  $F/F_k$  for k < q and  $G/G_q$  is not isomorphic to  $F/F_q$ .

#### Proposition (K.)

If K is a null-homologous knot in  $\#^l S^2 \times S^1$  with  $G = \pi_1(\#^l S^2 \times S^1 \setminus K, *)$ , then D(K) = q if and only if  $G/G_k$  is isomorphic to  $F/F_k$  for k < q and  $G/G_q$  is not isomorphic to  $F/F_q$ .

#### Theorem (K.)

If K is a null-homologous knot in  $\#^l S^2 \times S^1$  then  $D(K) \ge q$  if and only if the longitude of K lies in  $G_{q-1}$ .

### Proposition (K.)

If K is a null-homologous knot in  $\#^l S^2 \times S^1$  with  $G = \pi_1(\#^l S^2 \times S^1 \setminus K, *)$ , then D(K) = q if and only if  $G/G_k$  is isomorphic to  $F/F_k$  for k < q and  $G/G_q$  is not isomorphic to  $F/F_q$ .

#### Theorem (K.)

If K is a null-homologous knot in  $\#^l S^2 \times S^1$  then  $D(K) \ge q$  if and only if the longitude of K lies in  $G_{q-1}$ .

Theorem (K.)

D(K) is an invariant of concordance in  $(\#^l S^2 \times S^1) \times I$ .

#### Example



15 / 20

#### Example



• If every homology class in  $H_2(\#^l S^2 \times S^1 \setminus K)$  can be represented by a half-grope of arbitrary class, we say  $D(K) = \infty$ 

#### Example



15 / 20

- If every homology class in  $H_2(\#^l S^2 \times S^1 \setminus K)$  can be represented by a half-grope of arbitrary class, we say  $D(K) = \infty$
- If K is the unknot,  $D(K) = \infty$ .

#### Example



- If every homology class in  $H_2(\#^l S^2 \times S^1 \setminus K)$  can be represented by a half-grope of arbitrary class, we say  $D(K) = \infty$
- If K is the unknot,  $D(K) = \infty$ .
- $3 \leq D(K) \leq \infty$ .

# D(K) behaves like first non-vanishing $\overline{\mu}_L(I)$ .

Theorem (K.)

If K is a null-homologous knot in  $\#^l S^2 \times S^1$  and D(K) = q, then the first non-vanishing Massey product in  $H^1(\#^l S^2 \times S^1 \setminus K, *)$  is weight q.

# D(K) behaves like first non-vanishing $\overline{\mu}_L(I)$ .

#### Theorem (K.)

If K is a null-homologous knot in  $\#^l S^2 \times S^1$  and D(K) = q, then the first non-vanishing Massey product in  $H^1(\#^l S^2 \times S^1 \setminus K, *)$  is weight q.

## Theorem (K.)

There is an infinite family  $\{M_l\}$  of null-homologous knots in  $\#^l S^2 \times S^1$  which bound null-homologous disks in  $\natural^l S^2 \times D^2$  and distinct in (stable) concordance.

## What does this mean?



$$K_3 \subset \#^3 S^1 \times S^2$$
 with  $D(K) = 4$ 

For knots in  $K \subset \#^l S^2 \times S^1$ ,

concordance  $\implies$  slice in  $\natural^l S^2 \times D^2$ slice in  $\natural^l S^2 \times D^2 \implies$  concordance.

17 / 20

#### Proposition (Ozsváth-Szabó '03)

For every oriented n-component link  $L \subset S^3$  we can construct a knot  $\kappa(L) \subset \#^{n-1}S^1 \times S^2$  which is unique up to diffeomorphism of  $\#^{n-1}S^1 \times S^2$  throwing one knot onto another. We call  $\kappa(L)$  the knotification of L.

18 / 20

#### Proposition (Ozsváth-Szabó '03)

For every oriented n-component link  $L \subset S^3$  we can construct a knot  $\kappa(L) \subset \#^{n-1}S^1 \times S^2$  which is unique up to diffeomorphism of  $\#^{n-1}S^1 \times S^2$  throwing one knot onto another. We call  $\kappa(L)$  the knotification of L.

Matthew Hedden and I used the previous theorem in order to motivate the definition of a concordance group of knotified links.

Miriam Kuzbary (Rice University) Knot Conc. Invt. in  $S^2 \times S^1$ 's De

#### Proposition (Ozsváth-Szabó '03)

For every oriented n-component link  $L \subset S^3$  we can construct a knot  $\kappa(L) \subset \#^{n-1}S^1 \times S^2$  which is unique up to diffeomorphism of  $\#^{n-1}S^1 \times S^2$  throwing one knot onto another. We call  $\kappa(L)$  the knotification of L.

Matthew Hedden and I used the previous theorem in order to motivate the definition of a concordance group of knotified links.

#### Theorem (Hedden-K.)

If a  $L \subset S^3$  is an n-component link with first non-vanishing  $\overline{\mu}_L(I)$  invariant weight rn + 1, then  $D(\kappa(L)) \ge r + 1$ .

Miriam Kuzbary (Rice University) Knot Conc. Invt. in  $S^2 \times S^1$ 's December

• Classify Dwyer number for knots and links in other 3-manifolds.

- Classify Dwyer number for knots and links in other 3-manifolds.
- Construct a version with rational coefficients to deal with knots in 3-manifolds with torsion.

19 / 20

- Classify Dwyer number for knots and links in other 3-manifolds.
- Construct a version with rational coefficients to deal with knots in 3-manifolds with torsion.
- Identify higher order linking data within the link Floer complex (Gorsky-Liu-Moore '18 recovered the Sato-Levine invariant  $\overline{\mu}(1122)$  for 2-component links).

- Classify Dwyer number for knots and links in other 3-manifolds.
- Construct a version with rational coefficients to deal with knots in 3-manifolds with torsion.
- Identify higher order linking data within the link Floer complex (Gorsky-Liu-Moore '18 recovered the Sato-Levine invariant  $\overline{\mu}(1122)$  for 2-component links).

## Thank you!