A new concordance invariant of knots in sums of

 $S^{2} \times S^{1}$Miriam Kuzbary

Rice University

December 14, 2018

Preliminaries

- Two knots K and J inside S^{3} are concordant if there is a smooth, properly embedded annulus in $S^{3} \times[0,1]$ whose boundary is $K \times\{0\} \sqcup J \times\{1\}$.

Preliminaries

- Two knots K and J inside S^{3} are concordant if there is a smooth, properly embedded annulus in $S^{3} \times[0,1]$ whose boundary is $K \times\{0\} \sqcup J \times\{1\}$.
- A knot $K \subset S^{3}$ is slice if bounds a properly embedded disk in B^{4}.

Preliminaries

- Two knots K and J inside S^{3} are concordant if there is a smooth, properly embedded annulus in $S^{3} \times[0,1]$ whose boundary is $K \times\{0\} \sqcup J \times\{1\}$.
- A knot $K \subset S^{3}$ is slice if bounds a properly embedded disk in B^{4}.
- Two n-component links L_{1} and L_{2} in S^{3} are concordant if their components are concordant by n disjoint smooth annuli.

Preliminaries

- Two knots K and J inside S^{3} are concordant if there is a smooth, properly embedded annulus in $S^{3} \times[0,1]$ whose boundary is $K \times\{0\} \sqcup J \times\{1\}$.
- A knot $K \subset S^{3}$ is slice if bounds a properly embedded disk in B^{4}.
- Two n-component links L_{1} and L_{2} in S^{3} are concordant if their components are concordant by n disjoint smooth annuli.
- An n-component link L in S^{3} is slice if it bounds n smooth, disjoint, properly embedded disks in B^{4}.

Preliminaries

- Two knots K and J inside S^{3} are concordant if there is a smooth, properly embedded annulus in $S^{3} \times[0,1]$ whose boundary is $K \times\{0\} \sqcup J \times\{1\}$.
- A knot $K \subset S^{3}$ is slice if bounds a properly embedded disk in B^{4}.
- Two n-component links L_{1} and L_{2} in S^{3} are concordant if their components are concordant by n disjoint smooth annuli.
- An n-component link L in S^{3} is slice if it bounds n smooth, disjoint, properly embedded disks in B^{4}.

Proposition

A knot (or link) $K \subset S^{3}$ is slice if and only if it is concordant to the unknot (or unlink).

When is a link trivial modulo concordance?

For oriented links $L \subset S^{3}$, linking number is one of the first tools we use to detect nontrivial links.

When is a link trivial modulo concordance?

For oriented links $L \subset S^{3}$, linking number is one of the first tools we use to detect nontrivial links.

Example

When is a link trivial modulo concordance?

For oriented links $L \subset S^{3}$, linking number is one of the first tools we use to detect nontrivial links.

Example

(a) $l k(K, J)=1$

When is a link trivial modulo concordance?

For oriented links $L \subset S^{3}$, linking number is one of the first tools we use to detect nontrivial links.

Example

(a) $l k(K, J)=1$

When is a link trivial modulo concordance?

For oriented links $L \subset S^{3}$, linking number is one of the first tools we use to detect nontrivial links.

Example

(a) $l k(K, J)=1$

(b) $l k(K, J)=0$ so \ldots ?

Linking number in the context of groups

Fact:

If L is an n-component oriented link with L_{i} the 0 -framed longitude of the $i^{t h}$ component of L and $G=\pi_{1}\left(S^{3} \backslash \nu(L), *\right)$, then

$$
\left[L_{i}\right]=\sum_{i=1}^{n} \operatorname{lk}\left(L_{i}, L_{j}\right) \cdot x_{i} \in \mathrm{H}_{1}\left(S^{3} \backslash \nu(L)\right)=G /[G, G]
$$

where x_{i} represents the $i^{\text {th }}$ meridian.

Linking number in the context of groups

Fact:

If L is an n-component oriented link with L_{i} the 0 -framed longitude of the $i^{\text {th }}$ component of L and $G=\pi_{1}\left(S^{3} \backslash \nu(L), *\right)$, then

$$
\left[L_{i}\right]=\sum_{i=1}^{n} \operatorname{lk}\left(L_{i}, L_{j}\right) \cdot x_{i} \in \mathrm{H}_{1}\left(S^{3} \backslash \nu(L)\right)=G /[G, G]
$$

where x_{i} represents the $i^{\text {th }}$ meridian.

Question:

What if you look at the image of this longitude in a different quotient of G ?

Linking number in the context of groups

Recall:

The lower central series of a group G is defined recursively by $G_{1}=G$, $G_{n+1}=\left[G_{n}, G\right]$.

Linking number in the context of groups

Recall:

The lower central series of a group G is defined recursively by $G_{1}=G$, $G_{n+1}=\left[G_{n}, G\right]$.

Theorem (Casson '75)

If L_{1} and L_{2} are concordant links whose groups are G and H, then G / G_{q} and H / H_{q} are isomorphic for all q.

Linking number in the context of groups

Recall:

The lower central series of a group G is defined recursively by $G_{1}=G$, $G_{n+1}=\left[G_{n}, G\right]$.

Theorem (Casson '75)

If L_{1} and L_{2} are concordant links whose groups are G and H, then G / G_{q} and H / H_{q} are isomorphic for all q.

Motivating Idea:

Look at the image of a longitude L_{i} inside the quotient G / G_{q} !

Concordance data from the lower central series

Notice:

If $L \subset S^{3}$ is an n-component link, then $\mathrm{H}_{1}\left(S^{3} \backslash \nu(L)\right)=G /[G, G]=\mathbb{Z}^{n}$ and the n-component unlink has $\pi_{1}\left(S^{3} \backslash \nu(U), *\right) \cong F(n)$.

Concordance data from the lower central series

Notice:

If $L \subset S^{3}$ is an n-component link, then $\mathrm{H}_{1}\left(S^{3} \backslash \nu(L)\right)=G /[G, G]=\mathbb{Z}^{n}$ and the n-component unlink has $\pi_{1}\left(S^{3} \backslash \nu(U), *\right) \cong F(n)$.

To compute higher order linking numbers (called Milnor's invariants) back in ' 54 :

Concordance data from the lower central series

Notice:

If $L \subset S^{3}$ is an n-component link, then $\mathrm{H}_{1}\left(S^{3} \backslash \nu(L)\right)=G /[G, G]=\mathbb{Z}^{n}$ and the n-component unlink has $\pi_{1}\left(S^{3} \backslash \nu(U), *\right) \cong F(n)$.

To compute higher order linking numbers (called Milnor's invariants) back in ' 54 :
(1) Find clever presentation of G / G_{q}.

Concordance data from the lower central series

Notice:

If $L \subset S^{3}$ is an n-component link, then $\mathrm{H}_{1}\left(S^{3} \backslash \nu(L)\right)=G /[G, G]=\mathbb{Z}^{n}$ and the n-component unlink has $\pi_{1}\left(S^{3} \backslash \nu(U), *\right) \cong F(n)$.

To compute higher order linking numbers (called Milnor's invariants) back in ' 54 :
(1) Find clever presentation of G / G_{q}.
(2) Write $i^{\text {th }}$ longitude modulo G_{q} as a word in meridians (one for each component).

Concordance data from the lower central series

Notice:

If $L \subset S^{3}$ is an n-component link, then $\mathrm{H}_{1}\left(S^{3} \backslash \nu(L)\right)=G /[G, G]=\mathbb{Z}^{n}$ and the n-component unlink has $\pi_{1}\left(S^{3} \backslash \nu(U), *\right) \cong F(n)$.

To compute higher order linking numbers (called Milnor's invariants) back in ' 54 :
(1) Find clever presentation of G / G_{q}.
(2) Write $i^{\text {th }}$ longitude modulo G_{q} as a word in meridians (one for each component).
(3) Use the Magnus embedding to map this word to a power series ring in n non-commuting variables and read off coefficients of degree $q-1$ terms modulo coefficients of lower order terms.

Concordance data from the lower central series

Notice:

If $L \subset S^{3}$ is an n-component link, then $\mathrm{H}_{1}\left(S^{3} \backslash \nu(L)\right)=G /[G, G]=\mathbb{Z}^{n}$ and the n-component unlink has $\pi_{1}\left(S^{3} \backslash \nu(U), *\right) \cong F(n)$.

To compute higher order linking numbers (called Milnor's invariants) back in ' 54 :
(1) Find clever presentation of G / G_{q}.
(2) Write $i^{\text {th }}$ longitude modulo G_{q} as a word in meridians (one for each component).
(3) Use the Magnus embedding to map this word to a power series ring in n non-commuting variables and read off coefficients of degree $q-1$ terms modulo coefficients of lower order terms.

Concordance data from the lower central series

Rough definition (Milnor '54)

The Milnor invariants of an n-component link $L \subset S^{3}$ with link group G are a set of integers

$$
\bar{\mu}_{L}(I) \in \mathbb{Z}
$$

with $I=\left(i_{1} \ldots i_{k}\right)$ and $i_{j} \in\{1, \ldots, n\}$ detecting when G / G_{q} stops being isomorphic to F / F_{q} where F is the rank n free group.

Concordance data from the lower central series

Rough definition (Milnor '54)

The Milnor invariants of an n-component link $L \subset S^{3}$ with link group G are a set of integers

$$
\bar{\mu}_{L}(I) \in \mathbb{Z}
$$

with $I=\left(i_{1} \ldots i_{k}\right)$ and $i_{j} \in\{1, \ldots, n\}$ detecting when G / G_{q} stops being isomorphic to F / F_{q} where F is the rank n free group.

- $\bar{\mu}_{L}(i j)=l k\left(L_{j}, L_{i}\right)$

Concordance data from the lower central series

Rough definition (Milnor '54)

The Milnor invariants of an n-component link $L \subset S^{3}$ with link group G are a set of integers

$$
\bar{\mu}_{L}(I) \in \mathbb{Z}
$$

with $I=\left(i_{1} \ldots i_{k}\right)$ and $i_{j} \in\{1, \ldots, n\}$ detecting when G / G_{q} stops being isomorphic to F / F_{q} where F is the rank n free group.

- $\bar{\mu}_{L}(i j)=l k\left(L_{j}, L_{i}\right)$
- $\bar{\mu}_{L}(i j k)=$ triple linking number

$$
\bar{\mu}_{L}(i j k)=1
$$

Why are $\bar{\mu}$-invariants useful?

- (Milnor '54) $\bar{\mu}_{L}(I)$ is a link homotopy invariant for each I with non-repeating indices.

Why are $\bar{\mu}$-invariants useful?

- (Milnor '54) $\bar{\mu}_{L}(I)$ is a link homotopy invariant for each I with non-repeating indices.
- (Casson '75) $\bar{\mu}_{L}(I)$ is a link concordance invariant for each I.

Why are $\bar{\mu}$-invariants useful?

- (Milnor '54) $\bar{\mu}_{L}(I)$ is a link homotopy invariant for each I with non-repeating indices.
- (Casson '75) $\bar{\mu}_{L}(I)$ is a link concordance invariant for each I.
- (Turaev '79, Porter '80) $\bar{\mu}_{L}(I)$ can be computed by evaluating Massey products in $H^{1}\left(S^{3} \backslash \nu(L)\right)$ on individual boundary components.

Why are $\bar{\mu}$-invariants useful?

- (Milnor '54) $\bar{\mu}_{L}(I)$ is a link homotopy invariant for each I with non-repeating indices.
- (Casson '75) $\bar{\mu}_{L}(I)$ is a link concordance invariant for each I.
- (Turaev '79, Porter '80) $\bar{\mu}_{L}(I)$ can be computed by evaluating Massey products in $H^{1}\left(S^{3} \backslash \nu(L)\right)$ on individual boundary components.
- (Cochran '90) The first non-zero $\bar{\mu}_{L}(I)$ (and thus, the first q for which G / G_{q} is not isomorphic to F / F_{q}) can be computed using intersection theory.

Computing $\bar{\mu}_{L}(I)$

Example

We can detect non-zero Milnor's invariants by intersecting surfaces and computing linking numbers of the intersection curves.

Computing $\bar{\mu}_{L}(I)$

Example

We can detect non-zero Milnor's invariants by intersecting surfaces and computing linking numbers of the intersection curves.

Build a surface system $(\mathcal{C}, \mathcal{V})$

$$
\text { (a) }\{C(x), C(y)\} \in \mathcal{C}
$$

Computing $\bar{\mu}_{L}(I)$

Example

We can detect non-zero Milnor's invariants by intersecting surfaces and computing linking numbers of the intersection curves.

Build a surface system $(\mathcal{C}, \mathcal{V})$

(a) $\{C(x), C(y)\} \in \mathcal{C}$

(b) $V(x) \in \mathcal{V}$

Computing $\bar{\mu}_{L}(I)$

Example

We can detect non-zero Milnor's invariants by intersecting surfaces and computing linking numbers of the intersection curves.

Build a surface system $(\mathcal{C}, \mathcal{V})$

(a) $\{C(x), C(y)\} \in \mathcal{C}$

(b) $V(x) \in \mathcal{V}$

(c) $V(y) \in \mathcal{V}$

Computing $\bar{\mu}_{L}(I)$

Throw intersection curves in \mathcal{C}

$V(x) \cap V(y)$ in a simple closed curve $c(x y)$.

Computing $\bar{\mu}_{L}(I)$

Throw intersection curves in \mathcal{C}

$V(x) \cap V(y)$ in a simple closed curve $c(x y)$.

Compute pairwise linking numbers of curves in \mathcal{C} $l k\left(C(x y), C^{+}(x y)\right)=-1$

Computing $\bar{\mu}_{L}(I)$

Throw intersection curves in \mathcal{C}

$V(x) \cap V(y)$ in a simple closed curve $c(x y)$.

Compute pairwise linking numbers of curves in \mathcal{C}

$l k\left(C(x y), C^{+}(x y)\right)=-1$ which indicates (by work of Cochran) that L has a nonzero $\bar{\mu}_{L}(I)$ of weight $|I|=4$ (and thus G / G_{5} is not isomorphic to $\left.F / F_{5}\right)$.

Computing $\bar{\mu}_{L}(I)$

Throw intersection curves in \mathcal{C}

$V(x) \cap V(y)$ in a simple closed curve $c(x y)$.

Compute pairwise linking numbers of curves in \mathcal{C}

$l k\left(C(x y), C^{+}(x y)\right)=-1$ which indicates (by work of Cochran) that L has a nonzero $\bar{\mu}_{L}(I)$ of weight $|I|=4$ (and thus G / G_{5} is not isomorphic to F / F_{5}). If all possible linkings are trivial, run the process again.

Is there a version of this linking data for knots or links in other 3-manifolds?

Question:

For a knot or link $L \subset M$ where M is an oriented 3-manifold, can we similarly extract concordance data from quotients of $G=\pi_{1}(M \backslash \nu(K), *)$ by G_{q} ?

Is there a version of this linking data for knots or links in other 3-manifolds?

Question:

For a knot or link $L \subset M$ where M is an oriented 3-manifold, can we similarly extract concordance data from quotients of $G=\pi_{1}(M \backslash \nu(K), *)$ by G_{q} ?

Previous results:

- (D. Miller '95) Defined Milnor's invariants for knots homotopic to a singular fiber in a Seifert fiber space using covering spaces and combinatorial group theory.
- (Heck '11) Defined a homotopy-theoretic version of Milnor's invariants for knots in prime manifolds.

Is there a version of this linking data for knots or links in other 3-manifolds?

Question:

For a knot or link $L \subset M$ where M is an oriented 3-manifold, can we similarly extract concordance data from quotients of
$G=\pi_{1}(M \backslash \nu(K), *)$ by G_{q} ?

Previous results:

- (D. Miller '95) Defined Milnor's invariants for knots homotopic to a singular fiber in a Seifert fiber space using covering spaces and combinatorial group theory.
- (Heck '11) Defined a homotopy-theoretic version of Milnor's invariants for knots in prime manifolds.

Idea:

Exploit surfaces to define analogue of first non-vanishing $\bar{\mu}_{L}(I)$!

Realizing iterated commutators geometrically

A half grope of class 3 .

Realizing iterated commutators geometrically

A half grope of class 3.

Definition

A class n half-grope is a 2 -complex made of $n-1$ layers of surfaces.
(1) The first layer is an oriented surface Σ_{2}.

Realizing iterated commutators geometrically

A half grope of class 3 .

Definition

A class n half-grope is a 2 -complex made of $n-1$ layers of surfaces.
(1) The first layer is an oriented surface Σ_{2}.
(2) Exactly half of the generators in a symplectic basis for $H_{1}\left(\Sigma_{2}\right)$ bound surfaces Σ_{3}^{i} where $1 \leq i \leq g\left(\Sigma_{2}\right)$.

Realizing iterated commutators geometrically

A half grope of class 3 .

Definition

A class n half-grope is a 2 -complex made of $n-1$ layers of surfaces.
(1) The first layer is an oriented surface Σ_{2}.
(2) Exactly half of the generators in a symplectic basis for $H_{1}\left(\Sigma_{2}\right)$ bound surfaces Σ_{3}^{i} where $1 \leq i \leq g\left(\Sigma_{2}\right)$.
(3) For each i, exactly half of the generators in a symplectic basis for $H_{1}\left(\Sigma_{3}^{i}\right) \ldots$

The Dwyer number of a knot $K \subset \stackrel{l}{\#} S^{2} \times S^{1}$

Definition (Dwyer ' 75 , reformulation by Cochran-Harvey '07)
For a space $X, \Phi_{n}(X) \subset \mathrm{H}_{2}(X)$ is the subgroup generated by homology classes which can be represented by maps of surfaces which are the first layer of an $n+1$ half-grope.

The Dwyer number of a knot $K \subset \stackrel{l}{\#} S^{2} \times S^{1}$

Definition (Dwyer '75, reformulation by Cochran-Harvey '07)
For a space $X, \Phi_{n}(X) \subset \mathrm{H}_{2}(X)$ is the subgroup generated by homology classes which can be represented by maps of surfaces which are the first layer of an $n+1$ half-grope.

Definition (K.)

Let K be a null-homologous knot in $\#^{l} S^{2} \times S^{1}$. The Dwyer number of K is

$$
D(K)=\max \left\{q \left\lvert\, \frac{\mathrm{H}_{2}\left(\#^{l} S^{2} \times S^{1} \backslash K\right)}{\Phi_{q}\left(\#^{l} S^{2} \times S^{1} \backslash K\right)}=0\right.\right\}
$$

Why would this be the right definition?

Why would this be the right definition?

Proposition (K.)

If K is a null-homologous knot in $\#^{l} S^{2} \times S^{1}$ with $G=\pi_{1}\left(\#^{l} S^{2} \times S^{1} \backslash K, *\right)$, then $D(K)=q$ if and only if G / G_{k} is isomorphic to F / F_{k} for $k<q$ and G / G_{q} is not isomorphic to F / F_{q}.

Why would this be the right definition?

Proposition (K.)

If K is a null-homologous knot in $\#^{l} S^{2} \times S^{1}$ with $G=\pi_{1}\left(\#^{l} S^{2} \times S^{1} \backslash K, *\right)$, then $D(K)=q$ if and only if G / G_{k} is isomorphic to F / F_{k} for $k<q$ and G / G_{q} is not isomorphic to F / F_{q}.

Theorem (K.)

If K is a null-homologous knot in $\#^{l} S^{2} \times S^{1}$ then $D(K) \geq q$ if and only if the longitude of K lies in G_{q-1}.

Why would this be the right definition?

Proposition (K.)

If K is a null-homologous knot in $\#^{l} S^{2} \times S^{1}$ with
$G=\pi_{1}\left(\#^{l} S^{2} \times S^{1} \backslash K, *\right)$, then $D(K)=q$ if and only if G / G_{k} is isomorphic to F / F_{k} for $k<q$ and G / G_{q} is not isomorphic to F / F_{q}.

Theorem (K.)

If K is a null-homologous knot in $\#^{l} S^{2} \times S^{1}$ then $D(K) \geq q$ if and only if the longitude of K lies in G_{q-1}.

Theorem (K.)

$D(K)$ is an invariant of concordance in $\left(\#^{l} S^{2} \times S^{1}\right) \times I$.

Properties of $D(K)$.

Example

A knot $K \subset S^{1} \times S^{2}$ with $D(K)=4$

Properties of $D(K)$.

Example

A knot $K \subset S^{1} \times S^{2}$ with $D(K)=4$

- If every homology class in $\mathrm{H}_{2}\left(\#^{l} S^{2} \times S^{1} \backslash K\right)$ can be represented by a half-grope of arbitrary class, we say $D(K)=\infty$

Properties of $D(K)$.

Example

A knot $K \subset S^{1} \times S^{2}$ with $D(K)=4$

- If every homology class in $\mathrm{H}_{2}\left(\#^{l} S^{2} \times S^{1} \backslash K\right)$ can be represented by a half-grope of arbitrary class, we say $D(K)=\infty$
- If K is the unknot, $D(K)=\infty$.

Properties of $D(K)$.

Example

A knot $K \subset S^{1} \times S^{2}$ with $D(K)=4$

- If every homology class in $\mathrm{H}_{2}\left(\#^{l} S^{2} \times S^{1} \backslash K\right)$ can be represented by a half-grope of arbitrary class, we say $D(K)=\infty$
- If K is the unknot, $D(K)=\infty$.
- $3 \leq D(K) \leq \infty$.

$D(K)$ behaves like first non-vanishing $\bar{\mu}_{L}(I)$.

Theorem (K.)

If K is a null-homologous knot in $\#^{l} S^{2} \times S^{1}$ and $D(K)=q$, then the first non-vanishing Massey product in $H^{1}\left(\#^{l} S^{2} \times S^{1} \backslash K, *\right)$ is weight q.
$D(K)$ behaves like first non-vanishing $\bar{\mu}_{L}(I)$.

Theorem (K.)

If K is a null-homologous knot in $\#^{l} S^{2} \times S^{1}$ and $D(K)=q$, then the first non-vanishing Massey product in $H^{1}\left(\#^{l} S^{2} \times S^{1} \backslash K, *\right)$ is weight q.

Theorem (K.)

There is an infinite family $\left\{M_{l}\right\}$ of null-homologous knots in $\#^{l} S^{2} \times S^{1}$ which bound null-homologous disks in $⺊^{l} S^{2} \times D^{2}$ and distinct in (stable) concordance.

What does this mean?

$$
K_{3} \subset \#^{3} S^{1} \times S^{2} \text { with } D(K)=4
$$

For knots in $K \subset \#^{l} S^{2} \times S^{1}$, concordance \Longrightarrow slice in $\left\llcorner^{l} S^{2} \times D^{2}\right.$
slice in $\natural^{l} S^{2} \times D^{2} \nRightarrow$ concordance.

What linking data is preserved by knotification $L \rightsquigarrow \kappa(L)$?

What linking data is preserved by knotification $L \rightsquigarrow \kappa(L)$?

Proposition (Ozsváth-Szabó ‘03)

For every oriented n-component link $L \subset S^{3}$ we can construct a knot $\kappa(L) \subset \#^{n-1} S^{1} \times S^{2}$ which is unique up to diffeomorphism of $\#^{n-1} S^{1} \times S^{2}$ throwing one knot onto another. We call $\kappa(L)$ the knotification of L.

What linking data is preserved by knotification $L \rightsquigarrow \kappa(L)$?

Proposition (Ozsváth-Szabó ‘03)

For every oriented n-component link $L \subset S^{3}$ we can construct a knot $\kappa(L) \subset \#^{n-1} S^{1} \times S^{2}$ which is unique up to diffeomorphism of $\#^{n-1} S^{1} \times S^{2}$ throwing one knot onto another. We call $\kappa(L)$ the knotification of L.

Matthew Hedden and I used the previous theorem in order to motivate the definition of a concordance group of knotified links.

What linking data is preserved by knotification $L \rightsquigarrow \kappa(L)$?

Proposition (Ozsváth-Szabó ‘03)

For every oriented n-component link $L \subset S^{3}$ we can construct a knot $\kappa(L) \subset \#^{n-1} S^{1} \times S^{2}$ which is unique up to diffeomorphism of $\#^{n-1} S^{1} \times S^{2}$ throwing one knot onto another. We call $\kappa(L)$ the knotification of L.

Matthew Hedden and I used the previous theorem in order to motivate the definition of a concordance group of knotified links.

Theorem (Hedden-K.)

If a $L \subset S^{3}$ is an n-component link with first non-vanishing $\bar{\mu}_{L}(I)$ invariant weight $r n+1$, then $D(\kappa(L)) \geq r+1$.

Future Goals

Future Goals

- Classify Dwyer number for knots and links in other 3-manifolds.

Future Goals

- Classify Dwyer number for knots and links in other 3-manifolds.
- Construct a version with rational coefficients to deal with knots in 3 -manifolds with torsion.

Future Goals

- Classify Dwyer number for knots and links in other 3-manifolds.
- Construct a version with rational coefficients to deal with knots in 3-manifolds with torsion.
- Identify higher order linking data within the link Floer complex (Gorsky-Liu-Moore '18 recovered the Sato-Levine invariant $\bar{\mu}(1122)$ for 2-component links).

Future Goals

- Classify Dwyer number for knots and links in other 3-manifolds.
- Construct a version with rational coefficients to deal with knots in 3-manifolds with torsion.
- Identify higher order linking data within the link Floer complex (Gorsky-Liu-Moore '18 recovered the Sato-Levine invariant $\bar{\mu}(1122)$ for 2-component links).

Thank you!

